WEBINAR: Bridging the gap: using organ-on-a-chip as an experimental tool to develop (cost) effective therapeutics – Tuesday, 26 September 2023

cnb887 dtr webinar promo bar v1 |
Register here
cn-bio-organ-on-a-chip-logo cn-bio-organ-on-a-chip-logo cn-bio-organ-on-a-chip-logo cn-bio-organ-on-a-chip-logo
  • Products
    • Explore our solutions


      PhysioMimix® products enable you to recreate complex human biology and accurately predict human drug responses

      PhysioMimix OOC

      PhysioMimix OOC systems
      Learn more

      Consumables

      • Multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
      Learn more

      Models

      • Single-organ models
      • Liver-on-a-chip model
      • Multi-organ models

      Support packages

      • PhysioMimix® support packages
  • Applications
    • Discover the applications


      Investigate the application areas that our PhysioMimix® products and services support

      Learn more

      Disease modeling

      • Non-Alcoholic Steatohepatitis
      • Hepatitis B
      • COVID-19
      Learn more

      Safety toxicology

      • Drug-induced liver injury
      • Immune-mediated toxicities
      Learn more

      ADME

      • Drug absorption
      • Drug metabolism
      • Drug bioavailability
      Learn more
  • Services
    • Studies as a service


      Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

      Learn more
      NAFLD / NASH icons

      NAFLD / NASH

      Drug-induced liver injury icon

      Drug-induced liver injury

      icon adme |

      ADME

  • Resources
  • Company
    • About us


      Meet the team, explore our culture and discover what to expect when working with us

      CN Bio team photo
      About us

      Latest news

      • A guide to pre-validating cells for use in Organ-on-a-chip assays

      • CN Bio and LifeNet Health LifeSciences partner to supply validated primary human cells for microphysiological systems

      • CN Bio appoints Dr. Tomasz Kostrzewski as Chief Scientific Officer

      View all news

      Upcoming Events

      • AASLD 2023

      • EUROTOX 2023

      View all events

      Join the team!

      • Content Marketing Manager

      • Senior Scientist R&D

      View all jobs
  • Contact
  • Products
    • PhysioMimix® OOC Microphysiological Systems
    • Consumables
      • PhysioMimix® multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers
  • Contact
  • Skip to main content
  • Skip to footer
Chat live with an expert

Organ-on-a-Chip Resources

Resource type

Area of interest

Application notes

Resource image

Alveolar and Bronchial Microphysiological Systems for respiratory infection research and therapeutics evaluation

Richardson et al

Learn about respiratory diseases and their impact on global health, as well as the potential of CN Bio’s technology in developing new pulmonary therapeutics.

Application notes

Resource image

Human liver microphysiological system for predicting the drug-induced liver toxicity of differing drug modalities

Novac et al

The liver is one of the organs most susceptible to drug toxicity and drug-induced liver injury (DILI). With more than 750 FDA-approved drugs known to have a degree of DILI risk, better preclinical models are required to de-risk new therapeutics earlier in the drug development process.​ We assess whether a Liver MPS model could be used to understand the detailed mechanistic aspects of liver toxicity.

Application notes

Resource image

Microphysiological system for studying fatty liver disease and its impact on drug-induced liver injury

Kostrzewski et al

As a result of the increased prevalence of diabetes, obesity, and metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) is now the most common chronic liver disease in developed countries. Using better in vitro models to fast-track therapeutic development but also accurately assess DILI risk in NASH patients ahead of the clinic is critical. Here, we show the potential of an in vitro 3D NASH model to accurately identify any DILI-associated risks.

Application notes

Resource image

Improved prediction of oral bioavailability using a gut-liver microphysiological system

Abbas, Kostrzewski & Hughes

Central to the development of new drugs is an understanding of their pharmacokinetic properties, in particular their bioavailability. Here, we demonstrate the potential of a true 2-organ gut-liver MPS to better predict human bioavailability and improve in vitro to in vivo correlation.

Application notes

Resource image

Drug metabolism in a gut-liver microphysiological system

Abbas, Kostrzewski & Hughes

Studies investigating the efficacy and safety of candidate drugs use a variety of animal models to translate research from the bench to clinical trials and then to the clinic. Here, we demonstrate the potential of multi-organ MPS models for improved predictions of in vivo drug absorption and hepatic clearance rates.

Application notes

Resource image

Pharmacokinetic profiles revisited in 3D microfluidic tumour models

Petreus et al

The efficacy or toxicity of a drug is dependent on the concentration at the target. Current preclinical models mainly rely on in vivo animal studies which often lack translatability to the human. Here, we demonstrate the potential of a new in vitro MPS approach to better predict human PK and improve in vitro to in vivo translational relevance.

Application notes

Resource image

Predicting human drug permeability with a gut microphysiological system

Bray et al

Preclinical drug absorption studies are a key step when developing when therapeutics as they determine how much of orally-administered drug reaches the systemic circulation. Here, we show how we developed and characterized a gut MPS closely aligned to the human small intestine, using the PhysioMimix® Single-Organ system, and demonstrated its utility to predict drug permeability.

Speak to our experts

Speak directly with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

UK: +44 (0) 1223 737 941

US: +1 415 523 4005

Privacy | Cookies | Terms | Regulatory | Accessibility

Product Recycling

©2023 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. GB978184563

Latest news

  • A guide to pre-validating cells for use in Organ-on-a-chip assays September 5, 2023
  • CN Bio and LifeNet Health LifeSciences partner to supply validated primary human cells for microphysiological systems September 5, 2023
  • CN Bio appoints Dr. Tomasz Kostrzewski as Chief Scientific Officer August 30, 2023

Upcoming events

AASLD 2023 November 10-14, 2023

EUROTOX 2023 September 10-13, 2023