• Skip to main content
  • Skip to footer
  • About us
  • News
  • Events
  • Careers
cn-bio-organ-on-a-chip-logo
  • Products
    • PhysioMimix® OOC Microphysiological Systems
    • Consumables
      • PhysioMimix® multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Gut/Liver-on-a-chip
    • Lung-on-a-chip
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Technology
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers in Biotech
  • Contact us

Explore our solutions


PhysioMimix® is a suite of hardware, consumables and assay protocols that enable you to recreate complex human biology and accurately predict human drug responses.

PhysioMimix OOC

physiomimix-single-and-multi-organ-on-a-chip-systems
Learn more

Consumables

Multi-chip plates
3D validated cells
NASH-in-a-box
Bioavailability assay kit: Human 18
DILI assay kit: Human 24
Learn more

Models

Single-organ models
- Liver-on-a-chip model
- Lung-on-a-chip model
Multi-organ models
- Gut/Liver-on-a-chip models

Support packages

PhysioMimix® support packages

Discover the applications


Investigate the application areas that our PhysioMimix® products and services support

Learn more

Disease modeling

Metabolic dysfunction-associated steatohepatitis
Hepatitis B
Pulmonary infection
Learn more

Safety toxicology

Drug-induced liver injury
Immune-mediated liver injury
Learn more

ADME

Drug absorption
Drug metabolism
Drug bioavailability
Oligonucleotide delivery
Learn more

Studies as a service


Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

Learn more
icon-nash-1-150x150.png MASLD/MASH
icon-dili-tox-150x150.png Drug-induced liver injury
icon-adme-150x150.png ADME

ADME in vitro models

DMPK / ADME studies assess the body’s effect on a drug from initial absorption, distribution to organs and tissues, metabolism and final excretion

ADME data is collected during drug discovery and preclinical phases to optimize drug properties, support candidate selection, and subsequently inform the design of the clinical phase.

Current industry methods

Simple in vitro ADME models often lack physiological relevance. Animal models circumvent this but a host of interspecies differences, for example in cytochrome p450, limit their predictability. Use of in silico modeling to improve the translatability of preclinical ADME data remains constrained by the quality of input data.

Advancements with PhysioMimix®

PhysioMimix models are highly metabolically competent, with expression of a full range of cytochrome p450s and transporters.
Multi-organ experiments recreate the process of drug absorption and first-pass metabolism to derive bioavailability, offering enhanced accuracy versus animal models.

LC12 plate

Drug absorption


Absorption plays a critical role in determining the exposure of organs and tissues to a drug. A deeper understanding of the absorption process can help to achieve better bioavailability and refine dose. Recreating human representative absorption models is challenging, making it difficult to accurately measure this important parameter.

Our co-culture gut and lung absorption assays provide in vivo-like biological barrier properties to study compound absorption rates and more closely predict human outcomes.

Learn more
LC12 plate

Drug metabolism


Drug metabolism in the body is a complex process where drugs are structurally modified forming metabolites. Studying drug metabolism and pharmacokinetics (DMPK) is vital to identify lead compounds with optimal PK/PD properties, minimize any potential safety issues, and ensure efficient translation to the clinic.

Our liver, lung, and gut in vitro models can be used separately or in combination to study drug metabolism. These stable, human models accurately mimic the complexity of the physiological environment and offer a major advance for studying in vitro DMPK.

Learn more
LC12 plate

Drug bioavailability


Understanding the bioavailability of orally administered drugs is an essential part of the discovery process. Animals are notoriously poor predictors of human bioavailability and this leads to clinical failures.

Our multi-organ oral bioavailability assay with connected gut and liver models can provide accurate estimations of human bioavailability early in drug development, improving the chance of success in clinical trials.

Learn more
LC12 plate

Oligonucleotide delivery


The rise of oligonucleotide-based therapeutics provides a path forward for complex liver disease treatment, offering targeted and effective solutions where traditional therapies fall short.

Utilizing an advanced in vitro human Liver-on-a-chip, the PhysioMimix® Oligonucleotide delivery assay enables you to assess the targeted delivery of short oligonucleotide sequences to the liver, their uptake into hepatocytes and gene knockdown effects in a human-relevant model.

Learn more

Jump to area of interest

Drug absorption
Drug metabolism
Drug bioavailability
Oligonucleotide delivery

Speak to our experts

Request a meeting with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

UK: +44 (0) 1223 737 941

US: +1 415 523 4005

Privacy | Cookies | Regulatory | Accessibility
Website terms | Terms of sale

Product Recycling

©2025 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. GB978184563

Latest news

  • CN Bio introduces cross-species DILI services to enhance in vitro to in vivo extrapolation during preclinical drug development June 10, 2025
  • CN Bio expands access to OOC solutions for APAC customers with distributor agreement in South Korea May 20, 2025
  • Microphysiological systems for mAbs development: how do they address animal limitations? May 1, 2025
Cyber Essentials Logo