WEBINAR: Normalization of organ-on-a-chip samples for mass spectrometry based proteomics and metabolomics via dansylation-based assay – 28 June 2023

cnb825 webinar promo v1 |
Learn more
cn-bio-organ-on-a-chip-logo cn-bio-organ-on-a-chip-logo cn-bio-organ-on-a-chip-logo cn-bio-organ-on-a-chip-logo
  • Products
    • Explore our solutions


      PhysioMimix® products enable you to recreate complex human biology and accurately predict human drug responses

      PhysioMimix OOC

      PhysioMimix OOC systems
      Learn more

      Consumables

      • Multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
      Learn more

      Models

      • Single-organ models
      • Liver-on-a-chip model
      • Multi-organ models

      Support packages

      • PhysioMimix® support packages
  • Applications
    • Discover the applications


      Investigate the application areas that our PhysioMimix® products and services support

      Learn more

      Disease modeling

      • Non-Alcoholic Steatohepatitis
      • Hepatitis B
      • Oncology
      • COVID-19
      Learn more

      Safety toxicology

      • Drug-induced liver injury
      • Immune-mediated toxicities
      Learn more

      ADME

      • Drug absorption
      • Drug metabolism
      • Drug bioavailability
      Learn more
  • Services
    • Studies as a service


      Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

      Learn more
      NAFLD / NASH icons

      NAFLD / NASH

      Drug-induced liver injury icon

      Drug-induced liver injury

      icon adme |

      ADME

      Oncology icon

      Oncology

  • Resources
  • Company
    • About us


      Meet the team, explore our culture and discover what to expect when working with us

      CN Bio team photo
      About us

      Latest news

      • Immune-mediated DILI – Predicting the unpredictable!

      • CN Bio appoints Deepak Singh as Vice President of Sales and Marketing

      • CN Bio extends microphysiological system portfolio with PhysioMimix Single-Organ Higher Throughput System  

      View all news

      Upcoming Events

      • ISSX DMDG 2023

      • MPS World Summit Berlin 2023

      View all events

      Join the team!

      View all jobs
  • Contact
  • Products
    • PhysioMimix® OOC Microphysiological Systems
    • Consumables
      • PhysioMimix® multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers
  • Contact
  • Skip to main content
  • Skip to footer
Chat live with an expert

Modelling human liver fibrosis in the context of non-alcoholic steatohepatitis using a microphysiological system

September 15, 2021 by

Resource > Scientific publications >

Modelling human liver fibrosis in the context of non-alcoholic steatohepatitis using a microphysiological system

Filed under: Disease modeling and NAFLD/NASH

Modelling human liver fibrosis |
Access resource

Kostrzewski et al., 2021

Non-alcoholic steatohepatitis (NASH) is a common form of chronic liver disease characterised by lipid accumulation, infiltration of immune cells, hepatocellular ballooning, collagen deposition and liver fibrosis. There is a high unmet need to develop treatments for NASH. We have investigated how liver fibrosis and features of advanced clinical disease can be modelled using an in vitro microphysiological system (MPS). The NASH MPS model comprises a co-culture of primary human liver cells, which were cultured in a variety of conditions including+/- excess sugar, fat, exogenous TGFβ or LPS. The transcriptomic, inflammatory and fibrotic phenotype of the model was characterised and compared using a system biology approach to identify conditions that mimic more advanced clinical disease. The transcriptomic profile of the model was shown to closely correlate with the profile of patient samples and the model displayed a quantifiable fibrotic phenotype. The effects of Obeticholic acid and Elafibranor, were evaluated in the model, as wells as the effects of dietary intervention, with all able to significantly reduce inflammatory and fibrosis markers. Overall, we demonstrate how the MPS NASH model can be used to model different aspects of clinical NASH but importantly demonstrate its ability to model advanced disease with a quantifiable fibrosis phenotype.

Access resource

Speak to our experts

Speak directly with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

UK: +44 (0) 1223 737 941

US: +1 415 523 4005

Privacy | Cookies | Terms | Regulatory | Accessibility | Recycling

©2023 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. GB978184563

Latest news

  • Immune-mediated DILI – Predicting the unpredictable! March 16, 2023
  • CN Bio appoints Deepak Singh as Vice President of Sales and Marketing March 14, 2023
  • CN Bio extends microphysiological system portfolio with PhysioMimix Single-Organ Higher Throughput System   February 27, 2023

Upcoming events

ISSX DMDG 2023 June 11-14, 2023

MPS World Summit Berlin 2023 June 26-30, 2023