• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
cnb1383_liver-model-drug-safety_webinar_nav-ad_v1
  • About us
  • News
  • Events
  • Careers
cn-bio-organ-on-a-chip-logo
  • Products
    • PhysioMimix® OOC Microphysiological Systems
    • Consumables
      • PhysioMimix® multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Gut/Liver-on-a-chip
    • Lung-on-a-chip
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Technology
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers in Biotech
  • Contact us

Explore our solutions


PhysioMimix® is a suite of hardware, consumables and assay protocols that enable you to recreate complex human biology and accurately predict human drug responses.

PhysioMimix OOC

physiomimix-single-and-multi-organ-on-a-chip-systems
Learn more

Consumables

Multi-chip plates
3D validated cells
NASH-in-a-box
Bioavailability assay kit: Human 18
DILI assay kit: Human 24
Learn more

Models

Single-organ models
- Liver-on-a-chip model
- Lung-on-a-chip model
Multi-organ models
- Gut/Liver-on-a-chip models

Support packages

PhysioMimix® support packages

Discover the applications


Investigate the application areas that our PhysioMimix® products and services support

Learn more

Disease modeling

Metabolic dysfunction-associated steatohepatitis
Hepatitis B
Pulmonary infection
Learn more

Safety toxicology

Drug-induced liver injury
Immune-mediated liver injury
Learn more

ADME

Drug absorption
Drug metabolism
Drug bioavailability
Oligonucleotide delivery
Learn more

Studies as a service


Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

Learn more
icon-nash-1-150x150.png MASLD/MASH
icon-dili-tox-150x150.png Drug-induced liver injury
icon-adme-150x150.png ADME

CN Bio and Imperial College London Collaboration

September 8, 2020

CN Bio and Imperial College London collaborate to identify novel treatments for alcoholic hepatitis. CN Bio’s Liver-on-Chip technology to define underlying disease mechanisms and screen therapeutic targets.

CN Bio, a leading cell culture company, that has developed single and multi-organ microphysiological systems (MPS) to improve the accuracy and efficiency of drug discovery, today announced a collaboration with Imperial College London, a world-class research university. The research will harness CN Bio’s Liver-on-Chip technology to advance the understanding of the underlying mechanisms of alcoholic hepatitis and uncover novel targets for drug discovery and development.

Despite being an increasingly prevalent liver disease, the pathophysiology of alcoholic hepatitis is not fully understood, no evidence-based treatments are available that improve survival beyond a month. As part of the collaboration with Imperial College London, CN Bio’s PhysioMimix® MPS has been adopted by Professor Mark Thursz, a leading academic in Hepatology, to further his research into the disease by providing reliable human-relevant data, in vitro. Prof. Thursz will harness CN Bio’s 3D Liver-on-Chip technology to model the disease at a molecular and cellular level, including the distinct metabolomic profile observed in patients. The research aims to discover potential therapeutic targets for which novel drugs treatments can be developed.

CN Bio’s proprietary Liver-on-Chip technology enables longer term in vitro culture (>1 month) of primary liver cells in 3D microtissue structures for modelling a range of human liver diseases and their progression. The Company has developed assays for Non-Alcoholic Fatty Liver Disease (NAFLD)/steatosis and Non-Alcoholic Steatohepatitis (NASH) disease states, both of which are available as fee-for-service work.

Dr Tomasz Kostrzewski, Director, Biology, CN Bio, said: “This incredibly important research demonstrates a growing acceptance and adoption of advanced organ-on-chip models by the academic community, for mimicking liver diseases in vitro to investigate the mechanisms behind them. By using our technology in R&D efforts against yet another liver disorder, we hope to better inform drug discovery processes and fast-track investigations into new drug candidates.”

Professor Mark Thursz, Professor of Hepatology, Head of Department, Imperial College London, commented: “Alcoholic hepatitis is the most severe manifestation of alcohol-related liver disease, with a greater than 50% mortality at one year. It is proving challenging to find an effective treatment, in part due to the gaps in our knowledge of its pathophysiology. Harnessing CN Bio’s microphysiological technology, we hope our research will fill these gaps and improve our understanding of the molecular mechanisms that contribute to the changes seen in patients and ultimately reveal novel treatment targets.”

For more information about CN Bio’s Liver-on-Chip technology,
visit: https://cn-bio.com/liver-on-chip/

Category iconPress releases

Primary Sidebar

Other recent news

  • Microphysiological systems for mAbs development: how do they address animal limitations? May 1, 2025
  • Why the FDA animal testing phase-out for monoclonal antibodies? May 1, 2025
  • NIH to prioritize human-based research technologies & reduce animal use in research April 29, 2025
  • CN Bio and Pharmaron establish long-term strategic partnership to develop OOC technologies on a global R&D platform April 24, 2025
  • FDA’s plan to phase out animal testing requirement for monoclonal antibodies and other drugs with more human-relevant methods April 10, 2025

Speak to our experts

Request a meeting with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

UK: +44 (0) 1223 737 941

US: +1 415 523 4005

Privacy | Cookies | Regulatory | Accessibility
Website terms | Terms of sale

Product Recycling

©2025 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. GB978184563

Latest news

  • Microphysiological systems for mAbs development: how do they address animal limitations? May 1, 2025
  • Why the FDA animal testing phase-out for monoclonal antibodies? May 1, 2025
  • NIH to prioritize human-based research technologies & reduce animal use in research April 29, 2025
Cyber Essentials Logo