CN Bio logoCN Bio logoCN Bio logoCN Bio logo
  • Products
    • Explore our solutions


      PhysioMimix™ products enable you to recreate complex human biology and accurately predict human drug responses

      PhysioMimix OOC

      PhysioMimix OOC systems
      Learn more

      Consumables

      • Multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
      Learn more

      Models

      • Single-organ models
      • Multi-organ models

      Support packages

      • PhysioMimix™ support packages
  • Applications
    • Discover the applications


      Investigate the application areas that our PhysioMimix™ products and services support

      Learn more

      Disease modeling

      • Non-Alcoholic Steatohepatitis
      • Hepatitis B
      • Oncology
      • COVID-19
      Learn more

      Safety toxicology

      • Drug-induced liver injury
      • Immune-mediated toxicities
      Learn more

      ADME

      • Drug absorption
      • Drug metabolism
      • Drug bioavailability
      Learn more
  • Services
    • Studies as a service


      Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

      Learn more
      NAFLD / NASH icons

      NAFLD / NASH

      Drug-induced liver injury icon

      Drug-induced liver injury

      icon adme |

      ADME

      Oncology icon

      Oncology

  • Resources
  • Company
    • About us


      Meet the team, explore our culture and discover what to expect when working with us

      CN Bio team photo
      About us

      Latest news

      • The FDA further expands collaboration with CN Bio to evaluate the PhysioMimix Multi-organ microphysiological system

      • The U.S. FDA Modernization Act 2.0. Now the animal testing mandate is removed, learn what can be embraced in its place.

      • CN Bio appoints Dr Paul Brooks as Chief Executive Officer

      View all news

      Upcoming Events

      • SLAS2023

      • SOT 2023

      • WORD 2023

      • SLAS Europe 2023

      • MPS World Summit 2023

      View all events

      Join the team!

      View all jobs
  • Contact
  • Products
    • PhysioMimix™ OOC Microphysiological Systems
    • Consumables
      • PhysioMimix™ multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers
  • Contact
  • Skip to main content
  • Skip to footer
Chat live with an expert

The Rhythm of Life

December 9, 2020 by

Resource > Webinars >

The Rhythm of Life


Using Microfluidics To Mimic Blood Flow in Single- and Multi-Organ-on-a-Chip Models

Filed under: General OOC

web s2e1 |

Video content if present

Microphysiological Systems (MPS), or Organ-on-chip (OOC) technologies, enable researchers to model human biology in the lab via 3D microtissue-based studies.


Watch this webinar to learn:

  • The importance of exposing cells to flow shear forces and stresses
  • How do you go about emulating this in vitro?
  • Why CN Bio choose to adopt an organ specific programmable approach to flow
  • What effect does this have on single organ microtissue formation, cell phenotypes and functions?
  • How to overcome the challenges of connecting multi-organ cultures together

For these advanced 3D in vitro models to realise their potential and remain viable for long periods of time (>4 weeks), it is imperative that their culture environments are as “in vivo-like” as possible. One major consideration when attempting to simulate the natural physiological environment of cells, is how to recreate the fluid shear forces and dynamic mechanical stresses that cells would normally be exposed to in a plate.

A programmable approach, whereby flow rates and profiles (pulsatile or continuous) can be tuned to match that of a specific human organ more accurately, has been adopted by CN Bio’s PhysioMimix™ OOC lab-benchtop ready MPS. Here, the disciplines of bioengineering and biology work in partnership to emulate and test the effects of organ specific flow rates, ensuring physiologically relevant 3D microtissues are formed, cellular phenotypes and functions are maintained and microtissues respond appropriately to reference compounds.

Whilst working with single organs in isolation is challenging enough for Bioengineers to recreate, a more complex conundrum to solve is the question of – how to mimic a multi-organ environment in vitro such that their tissues and their environments become connected?
Join us on Sept 22nd, to learn more about the science behind emulating in vivo blood flow in vitro, and why it is important for the accurate re-creation of human physiology in the lab.


Speaker Information:


Dr Graham Broder |Dr Graham Broder

Associate Director – Bio Engineering
CN Bio


Alysha Bray |Alysha Bray

Scientist
CN Bio

Video content if present

Speak to our experts

Speak directly with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

+44 (0) 1223 737941

Privacy | Cookies | Terms | Regulatory | Accessibility

©2023 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. 978184563

Latest news

  • The FDA further expands collaboration with CN Bio to evaluate the PhysioMimix Multi-organ microphysiological system January 17, 2023
  • The U.S. FDA Modernization Act 2.0. Now the animal testing mandate is removed, learn what can be embraced in its place. January 9, 2023
  • CN Bio appoints Dr Paul Brooks as Chief Executive Officer December 19, 2022

Upcoming events

MPS World Summit 2023 June 26-30, 2023

SLAS Europe 2023 May 22-26, 2023

SLAS2023 February 25 - March 1, 2023