• Skip to main content
  • Skip to footer
  • About us
  • News
  • Events
  • Careers
cn-bio-organ-on-a-chip-logo
  • Products
    • PhysioMimix® OOC Microphysiological Systems
    • Consumables
      • PhysioMimix® multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Gut/Liver-on-a-chip
    • Lung-on-a-chip
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Technology
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers in Biotech
  • Contact us

Explore our solutions


PhysioMimix® is a suite of hardware, consumables and assay protocols that enable you to recreate complex human biology and accurately predict human drug responses.

PhysioMimix OOC

physiomimix-single-and-multi-organ-on-a-chip-systems
Learn more

Consumables

Multi-chip plates
3D validated cells
NASH-in-a-box
Bioavailability assay kit: Human 18
DILI assay kit: Human 24
Learn more

Models

Single-organ models
- Liver-on-a-chip model
- Lung-on-a-chip model
Multi-organ models
- Gut/Liver-on-a-chip models

Support packages

PhysioMimix® support packages

Discover the applications


Investigate the application areas that our PhysioMimix® products and services support

Learn more

Disease modeling

Metabolic dysfunction-associated steatohepatitis
Hepatitis B
Pulmonary infection
Learn more

Safety toxicology

Drug-induced liver injury
Immune-mediated liver injury
Learn more

ADME

Drug absorption
Drug metabolism
Drug bioavailability
Oligonucleotide delivery
Learn more

Studies as a service


Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

Learn more
icon-nash-1-150x150.png MASLD/MASH
icon-dili-tox-150x150.png Drug-induced liver injury
icon-adme-150x150.png ADME

Three-dimensional perfused cell culture enhances the infectability of primary human hepatocytes with Hepatitis B virus

May 11, 2015

Resource > Posters >

Three-dimensional perfused cell culture enhances the infectability of primary human hepatocytes with Hepatitis B virus

Filed under: Disease modeling and HBV

3D perfused cell culture enhances the infectability of primary human hepatocytes with Hepatitis B virus EDIT |
Access resource

Kostrzewski et al

Research into the biology and treatment of hepatitis B virus (HBV) requires an in vitro infection model that fully supports all the steps of the HBV life cycle and accurately recapitulates virus-host interactions. However, the molecular mechanisms underlying HBV infection remain poorly understood.

The sodium-taurocholate co-transporting polypeptide (NTCP) has recently been described as the HBV receptor expressed on hepatocyte baso-lateral membranes, but current models relying on NTCP overexpression in hepatoma cell lines and non-polarized culture of hepatocytes, do not fully capture the complexity of HBV infection. As the principal host cell infected by HBV in vivo, primary human hepatocytes represent the gold standard for studying HBV interactions with the host. Prior studies have shown that PHH support HBV infection, although infection is usually not robust and PHH rapidly lose their hepatic phenotype shortly after isolation from the in vivo microenvironment.

Here, we utilized 3 perfused 3D cell culture system and compared the infectivity of PHH cultured in 2D plates to those cultured in 3D.

Access resource

Speak to our experts

Request a meeting with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

UK: +44 (0) 1223 737 941

US: +1 415 523 4005

Privacy | Cookies | Regulatory | Accessibility
Website terms | Terms of sale

Product Recycling

©2025 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. GB978184563

Latest news

  • CN Bio introduces cross-species DILI services to enhance in vitro to in vivo extrapolation during preclinical drug development June 10, 2025
  • CN Bio expands access to OOC solutions for APAC customers with distributor agreement in South Korea May 20, 2025
  • Microphysiological systems for mAbs development: how do they address animal limitations? May 1, 2025
Cyber Essentials Logo