• Skip to main content
  • Skip to footer
  • About us
  • News
  • Events
  • Careers
cn-bio-organ-on-a-chip-logo
  • Products
    • PhysioMimix® OOC Microphysiological Systems
    • Consumables
      • PhysioMimix® multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Gut/Liver-on-a-chip
    • Lung-on-a-chip
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Technology
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers in Biotech
  • Contact us

Explore our solutions


PhysioMimix® is a suite of hardware, consumables and assay protocols that enable you to recreate complex human biology and accurately predict human drug responses.

PhysioMimix OOC

physiomimix-single-and-multi-organ-on-a-chip-systems
Learn more

Consumables

Multi-chip plates
3D validated cells
NASH-in-a-box
Bioavailability assay kit: Human 18
DILI assay kit: Human 24
Learn more

Models

Single-organ models
- Liver-on-a-chip model
- Lung-on-a-chip model
Multi-organ models
- Gut/Liver-on-a-chip models

Support packages

PhysioMimix® support packages

Discover the applications


Investigate the application areas that our PhysioMimix® products and services support

Learn more

Disease modeling

Metabolic dysfunction-associated steatohepatitis
Hepatitis B
Pulmonary infection
Learn more

Safety toxicology

Drug-induced liver injury
Immune-mediated liver injury
Learn more

ADME

Drug absorption
Drug metabolism
Drug bioavailability
Oligonucleotide delivery
Learn more

Studies as a service


Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

Learn more
icon-nash-1-150x150.png MASLD/MASH
icon-dili-tox-150x150.png Drug-induced liver injury
icon-adme-150x150.png ADME

Every Breath You Take

July 25, 2022

Resource > Webinars >

Every Breath You Take


Predicting Inhaled Drug ADME Using Lung-on-a-Chip

Filed under: ADME and Drug absorption

web s5e2 |

Video content if present

Watch this webinar to learn:

 

  • Understand the pros & cons of oral drug inhalation
  • Discover how to culture LOAC models using PhysioMimix® OOC
  • Learn how LOAC models accurately mimic the human lung tissue
  • Predict the permeability and absorption of inhaled medication

 

Drug administration via inhalation is superior to many other delivery methods because our lungs provide a large surface area for absorption, access to the whole blood volume and relatively little metabolic activity. Despite this, there are relatively few in vitro models available for precisely measuring the absorption and permeability of drugs across the lung and into systemic circulation.

In this short (20-minute) on-demand webinar, Lead Scientist, Dr Emily Richardson describes novel alveoli and bronchi lung-on-a-chip (LOAC), or lung microphysiolological system (MPS), models. The presentation demonstrates how to predict drug pharmacokinetics, allowing for more rapid, precise and cost-effective compound analysis.


View our Q&A document from the live event.


Speaker Information:

Dr Emily Richardson Dr Emily Richardson

Lead Scientist – Assay Development
CN Bio


Innovate UKThis work was funded by a grant from Innovate UK

Video content if present

Speak to our experts

Request a meeting with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

UK: +44 (0) 1223 737 941

US: +1 415 523 4005

Privacy | Cookies | Regulatory | Accessibility
Website terms | Terms of sale

Product Recycling

©2025 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. GB978184563

Latest news

  • CN Bio introduces cross-species DILI services to enhance in vitro to in vivo extrapolation during preclinical drug development June 10, 2025
  • CN Bio expands access to OOC solutions for APAC customers with distributor agreement in South Korea May 20, 2025
  • Microphysiological systems for mAbs development: how do they address animal limitations? May 1, 2025
Cyber Essentials Logo