CN Bio logoCN Bio logoCN Bio logoCN Bio logo
  • Products
    • Explore our solutions


      PhysioMimix™ products enable you to recreate complex human biology and accurately predict human drug responses

      PhysioMimix OOC

      PhysioMimix OOC systems
      Learn more

      Consumables

      • Multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
      Learn more

      Models

      • Single-organ models
      • Multi-organ models

      Support packages

      • PhysioMimix™ support packages
  • Applications
    • Discover the applications


      Investigate the application areas that our PhysioMimix™ products and services support

      Learn more

      Disease modeling

      • Non-Alcoholic Steatohepatitis
      • Hepatitis B
      • Oncology
      • COVID-19
      Learn more

      Safety toxicology

      • Drug-induced liver injury
      • Immune-mediated toxicities
      Learn more

      ADME

      • Drug absorption
      • Drug metabolism
      • Drug bioavailability
      Learn more
  • Services
    • Studies as a service


      Our team will work collaboratively with you to design a study around your research goals and generate actionable data within weeks

      Learn more
      NAFLD / NASH icons

      NAFLD / NASH

      Drug-induced liver injury icon

      Drug-induced liver injury

      icon adme |

      ADME

      Oncology icon

      Oncology

  • Resources
  • Company
    • About us


      Meet the team, explore our culture and discover what to expect when working with us

      CN Bio team photo
      About us

      Latest news

      • The FDA further expands collaboration with CN Bio to evaluate the PhysioMimix Multi-organ microphysiological system

      • The U.S. FDA Modernization Act 2.0. Now the animal testing mandate is removed, learn what can be embraced in its place.

      • CN Bio appoints Dr Paul Brooks as Chief Executive Officer

      View all news

      Upcoming Events

      • SLAS2023

      • SOT 2023

      • WORD 2023

      • SLAS Europe 2023

      • MPS World Summit 2023

      View all events

      Join the team!

      View all jobs
  • Contact
  • Products
    • PhysioMimix™ OOC Microphysiological Systems
    • Consumables
      • PhysioMimix™ multi-chip plates
      • 3D validated cells
      • NASH-in-a-box
    • Organ-on-a-chip models
    • Support packages
  • Applications
    • Disease modeling
    • Safety toxicology
    • ADME
  • Services
    • Non-Alcoholic Steatohepatitis
    • Drug-Induced Liver Injury
    • ADME
  • Resources
  • Company
    • About us
    • Events
    • News
    • Careers
  • Contact
  • Skip to main content
  • Skip to footer
Chat live with an expert

Engineering Mucosal Barriers

March 9, 2021 by

Resource > Webinars >

Engineering Mucosal Barriers


From Organoids to Organs-on-Chips with Professor Linda Griffith

Filed under: Disease modeling

web s2e4 |

Video content if present

In this webinar, we explore how the explosion of interest in the human microbiome – especially but not only that in the gut – has driven new interest in building human mucosal barrier models.


Watch this webinar to learn:

  • Current tissue engineering efforts to generate mucosal barriers
  • The influence of device design and fabrication on culture performance for specific applications, including immune cell circulation and microbe-mucosal immune interactions
  • How interconnected microphysiological systems (MPSs) reveal non-intuitive interactions between liver and gut, and other organs when inflammation is involved

Mucosal barriers are the gateways to all internal organs, serving to transport oxygen, nutrients, and waste while at the same time performing enormous feats of protection against infection and other hazardous insults. The explosion of interest in the human microbiome – especially but not only that in the gut – has driven new interest in building human mucosal barrier models.

This talk will highlight three related themes: (i) engineering synthetic microenvironments to expand primary adult epithelial organoids and induce morphogenesis into mucosal barriers (ii) engineering microfluidic devices to create microbial-mucosal interfaces that enable chronic co-culture of the most super strict anaerobes, such as Faecalibacterium prausnitzii, with a colon mucosal barrier and (iii) interconnection of mucosal barriers with other tissues in systemic circuits to illuminate the role of gut-derived bacterial metabolites on function of other organ systems. Examples will emphasize how these approaches can be used to model chronic inflammatory diseases.


Speaker Information:

Professor Linda GriffithProfessor Linda Griffith

S.E.T.I. Professor of Biological and Mechanical Engineering Research at Massachusetts Institute of Technology
Director of the Center for Gynepathology Research

Video content if present

Speak to our experts

Speak directly with one of our OOC experts to see how our products and services can support your studies

Request a meeting

Footer

CN Bio logo

332 Cambridge Science Park, Milton Road
Cambridge, CB4 0WN

+44 (0) 1223 737941

Privacy | Cookies | Terms | Regulatory | Accessibility

©2023 CN Bio Innovations Ltd
Registered No. ‍06517359. VAT No. 978184563

Latest news

  • The FDA further expands collaboration with CN Bio to evaluate the PhysioMimix Multi-organ microphysiological system January 17, 2023
  • The U.S. FDA Modernization Act 2.0. Now the animal testing mandate is removed, learn what can be embraced in its place. January 9, 2023
  • CN Bio appoints Dr Paul Brooks as Chief Executive Officer December 19, 2022

Upcoming events

MPS World Summit 2023 June 26-30, 2023

SLAS Europe 2023 May 22-26, 2023

SLAS2023 February 25 - March 1, 2023